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Summary. — A ratlier complete treatment is given here of N/D equations
where the D function has only a finite cut. The original work of Chew
on such equations is reviewed and expanded to prove the existence of
solutions whenever d,(s;) <=z and to reduce the integral equation for N
in these cases to a combined Wiener-Ilopf-I'redholm type. An explieit
formula for the Wiener-Hopf resolvent kernel is obtained which involves
a single integral over products of hypergeometric functions. CDD ambi-
guities are investigated and maximal analyticity of the second degree,
or analyticity in angular momentum, is demonstrated as a tool for
removing all ambiguity from the solntion.

1. Introduction.

We discuss here in some detail the mathematical properties of N /D equations
for elastie, partinl-wave amplitudes where the D-function has only a finite
cut from s = s, to § =8, (s is the total center-of-mass energy squared and s,
is threshold). The N-function carries the right-hand cut of the amplitude
above s, as well ay the left-hand cut. Such strip equations form the basis for
at least two current schemes for dynamical calenlations in S-matrix theory,
that of CHEW (1) and Crew and Joxes (2), and one of BaLAZs (%).

(*) The initial stages of this work were done while the author was at the lL.awrence
Radiation Laboratory, Berkeley, Calif., under the auspices of the U. 5. Atomic Iinergy
Commission.

(**) National Science Foundation Postdoctoral I'ellow, 1964.

() G. F. Cusw: Phys. Rev., 129, 2363 (1963).

(3) G. . Cuew and C. E. Joxus: Phys. Rev., 135, B3 208 (1964). Ior numerical
results, see D. . TrrLivz and V. T.. Trerrrrz: Phys. Ree., 137, BB 142 (1965).

(3) T.. A. P. Bavazs: Phys. Rev., 134, B 1315 (1964).
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762 C. E. JONES

In the strip form of N/D equations, the resulting integral equation for N, (s)
has only a finite-range integration s, to s; and inelastic effects (such as Regge
behaviour (1+2)) can casily be incorporated above s,.

One of our major concerns here shall be the uniqueness of the solutions to
the strip equations. It is well-known that ordinary N/D problems are afflicted
with DD ambiguities (*), which may be characterized by the addition to
the D-function of poles whose positions and residues are essentially arbitrary.
We wish to understand the role of CHD-type arbitrariness in the strip equ:bfions
in which elastic unitarity is not assumed throughout the inclastic region.
Although o moditication of the standard N/D equations to incorporate inelastic
eflects has been made by several authors (%), still the strip equations appear
to provide a new and useful viewpoint for studying the problem. Such a study
is useful because of the current application of strip equations in making cal-
culations (*3).

Our goal here is to indicate how the N/D equations with a finite strip deter-
mine one unique solution for the partial-wave amplitude when one insists that
amplitudes at lower angular momenta be connected to those at high angular
momenta by analytic continuation. This is sometimes called the principle of
maximal analyticity of the second degree. In wriving at our goal, we give
a rather complete mathematical discussion of the strip equations.

We briefly outline the contents of what follows. First, we give a derivation
of the strip equations, in which no assumptions need be assumed about the
asymptotic behaviour in energy of the partial-wave amplitudes. In the spirit
of the strip concept, this information is contained in the input to the problem.

We continue by studying the existence of solutions to the equations for
large 1. The {ull machinery of the Wicner-1Lopf-Fredholm theory, originally -
discussed by CHew (%), is developed. Curw proved the existence of solutions
for d8,(s,) < @2 (where s, is the strip edge); we expand his results to demonstrate
the existence of solutions whenever d,(s,) << 7.

The uniqueness of solutions at high 7 is established by rcquiring that the
amplitude possess no poles (bound states) for large 1. The continuation of these
solutions to lower values of ! is then discussed. We observe, in detail, how
zeros of the D-function may move onto the physical sheet as 1 is decreased
but we conclude that the D-function cannot develop poles at small values of 1.

The relationhsip of the gineral results derived here to the models given
in ref. (¥3) is mentioncd briefly at several points in the text.

(Y L. Castinneso, R. Danrrz and 1. Dysox: Phys. Bev., 101, 453 (1956).

(®) M. F'ro1issart: Nuovoe Cimento, 22, 193 (1961); G. I'ryr and R. I.. WarNock:
Phys. Rev., 130, 478 (1963). (This paper contains an exhaustive study of the mathematics
of partial-wave dispersion relations and N/D equations including a discussion of CDD
ambiguities in inelastic problems.) '

(&) G. I'. Curw: Phys. Rev., 130, 1264 (1963).
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N/D EQUATIONS WITII A FINITE STRIP 763

2. - Derivation of strip equations.

The N/D equations with a finite strip were first written down by Cuew ()
although they are identical in form to equations formulated by Urptsky (7)
for an infinite interval. We present here a derivation of the finite-strip equations
in which only properties of the amplitude in & finite region including the strip
(8, 8;) are needed. The high-energy properties and contours of the amplitude
are contained in an input function B (s), w‘}_ﬁ('h‘is assumed to be given.

- We consider an elastic partial-wave amplitude B,(s), which is defined in terms
of the phase shift 8,(s) as follows

sin d,(s) exp[14,(s)]

& = ’
where

Pl
(2.2) o) = ==

Tor simplicity the four particles are taken to be spinless and of unit mass.
The phase-space factor o,(s) has been chosen so that B,(s) is real in the gap
0 < s < s, for real values of 1 ().

The basic problem of interest is a discussion of the solutions to the equation

Sy

- ] l]) ',I
2.3) mezﬂuw+;j®u%if)

with the assumption that Bf(s) is a given function and that 53,(s) is subjected
to the elastic (4, real) unitarity restraint (2.1) in the strip (s,, s,). We assume
temporarily that we are operating at values of I such that there are no poles
(bound states) of B3,(s) on the physical sheet. From the well-known analyticity
properties of B,(s) in s wosee that By (s) includes both the left-hand cut of 5,(s)
and the right-hand cut above s =s,.

To find & solution of eqs. (2.1) and (2.3) we write

Ny(s)
2.4 B,(s) =" )
24 {5) D (s)

(7y J. L. Urersky: Phys. Rev., 123, 1459 (1961).
(®) A. O. Barur and D. Zwavzicer: Phys. Rev., 127, 974 (1962).
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764 C. E. JONES

where 1),(s) is eut from s, to s, and is real outside this region, while N,(s) car-
ries the remaining cuts of B,(s) and is real in the region 0 <s<<s,.

The justification for the break-up of 5,(s) in (2.4) iy provided by the Omnés
formula (*°). For sufliciently large ! such that there are no bound states we
may define

b

(2.5) D) = exp ["“]‘ j aw 20 )} .
JT

N — N

We take for large ! the phase-shift convention §,(s,) = 0. The D,(s) defined
in, (2.5) clearly carries the phase of By(s) on the interval (s,, s,), is real outside
this interval, and if &,(s,) <z, it has no poles or zcros. Iinally, D,(s)—1
as s —oo. Thus D,(s) has the dispersion relation

1 [ ImDys
Zds I_‘( ) .
7T §'—39

%o

(2.6) Dy(s) =1+

<

Using (2.3) we may write for N (s),

(2.7) Nils) = Bu(s) Dils) = B5() Do) + 2 f ds’

7T

Im Ii,&

s'—s

So
By definition, N,(s) is real in the interval (s,, s;), so the second term in (2.7)

must caneel the imaginary part of the first term. We recall that the second
term vanishes at infinity like I/s which leads to the unambiguous identification

Dyls) /

4

(2.8) gy B0 ] fds’ Bi(s) Im Difs')

! /

$—Ss 14 §—x

8o 8

Finally, we may write for N,(s), incorporating (2.6) and assuming elastic uni-
tarity in the interval (sq, $,),

1 [ B — B(s
(2.9) Vi) = Bis) ¥ [ ‘(”5,),_—;'@ o) Vo (s") .

S0

This type of int<gral equation for N (s) with s, = co was first written down
by Urrrsiy (7). The use of the equation with s, < oo was first discussed by
Curw (Y). The derivation given here is advantageous because we are never

(%) R. Oxx®ES: Nuovo Cimento, 21, 524 (1961).
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N/D BEQUATIONS WITIHL A FINITE STRIP 765

required to discuss explicitly the high-energy properties of the amplitude.
All such knowledge is carried along by means of the function Bi(s).

Equation (2.9) gives a linear integral equation for N,(s). If it is soluble,
then D,(s) is determined by the equation

L[ dy
(2.10) Dy(s) =1 “‘j s N ()

It is easy to check that the resulting By (s) = N(s)]D,(s) satisties eqs. (2.1) and
(2.3) for real I provided that Ny(s) is real for s in the interval (s, s,).

3. — The problem of solving the integral equation for ..

We discuss here the problem of solving eq. (2.9) and the consequent deter-
mination of the partial-wave awmplitude. The nature of the solutions—their
existence and uniqueness—is clearly determined to a large extent by the input
function B](s). Generally BY(s) will have o singularity at & = 5, but will other-
wise be analytic in the strip. This fact follows from eq. (2.3) together with
the known analyticity propertics of B, (s).

In the Balazs (*) approximation, B(s) ix assumed to be regular at s =s,.
In this case eq. (2.9) becomes Fredholm-type giving a unique solution for N,(s)
which is also nonsingular at s = s, but D,(s) as computed by (2.10) will be
logarithmically singular at s = s,. This has the effect of forcing the amplitude
artificially to vanish at ¢ = «,.

In the Chew-Joxes (3) model, Bi(s) is logarithmically singular at s =,
and eq. (2.9) is no longer Fredholm-type. I s; is less than the first inelastic
threshold, the exact BY(s) is also logarithmically singular at s = s, as we shall
thortly demonstrate. Thus the model of Chew and Jones (2) may be considered
so more nearly approximate the exact strip equations. By studying the realistic
case where Bj(s) is logarithmically singular at s = s,, while harder, we have the
advantage of retaining the features of the exact problem and we know that
the answers to the questions of existence and uniqueness of solutions we find
will be quite general.

As mentioned, for the case which we now consider, eq. (2.9) is no longer
Fredholm. Cnrw has studied eq. (2.9) and has shown how to calculate the
solution for the case §,(s;) <z/2 (6). CHEW selects the physically interesting
solution for this case although we shall show that other solutions do exist which
are unitary and that have the correct discontinuities. We shall demonstrate
in the following Sections that basically two types of ambiguities arise in defining
solutions to the strip cquations. One is of the well-known (DD type. The
other type of ambiguity, which is peculiar to the finite strip, has to do with prop-
erties of the equation at the strip boundary s = s,.
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766 C. E. JONES

Our goal will be to show that both types of ambiguity are removed by the
assumption of maximal analyticity of the second degree (*)—namely that
we select solutions under the criterion that they be analytic continuations
from arbitrarily large values of angular momentum I,

In order to carry out our program we review the work of Chew (%) in deter-
mining solutions to (2.9) and in the process generalize his results to show how
to calculate the solutions for all d(s;) less than .

We begin our discussion by considering the dynamical equations for large I.
We shall then formulate the means for determining solutions at lower values
of 1 by analytic continuation.

Tor sufficiently large I we may assume that there are no bound states and,
as before, we take the convention d,(s,) =0 as I —oo. It is also true that
any physically reasonable B7(s) will have the property

(3.1) Bi(s) —— 0.

Condition (3.1) is cquivalent to the physical requirement that the interaction
range be finite. With the convention that 8,(s,) = 0 for large [, we may conclude
from (3.1) that &,(s;) — 0 as I—>oco. Now we derive the most general solution
of eq. (2.9) for Ny(s) for I large.

Tirst, we observe from eq. (2.3) that as s —s from above, the second
term has the limiting behavior (°)

(3.2) ldes, I B5,(x) I Bis)

14

, In (s —s,) .

§'—8 sy 7T

%o

So in order for unitarity to be preserved at s =s;, it follows that

B (s;) — =M n (sy—8) .

8>3, JT

Thus the kernel of our original etjuation (2.9) behaves like

]n (8,— ‘,“',I,) — 111 (8,—5)

s'—3

as both s and s’ approach s, and is not square integrable or of the Fredholm
type.

(19) G. I'. Ciew: Lawrence Radiation Laboratory Réport UCRIL-10786 (April 1963)
(unpublished).
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N/D EQUATIONS WITH A FINITE STRIP 767

Following Crew (°) it is advantageous to separate out the troublesome
part of the kernel and to center etort on solving the resulting integral
equation

T T A 5 ! 1 1
(3.3) N,(s) = N%s) — T{l ds'k(s, s") N, (s') ,
where
(3.4) NU(s) = By (s) + | As"K (s, s') N y(s')
and
- , In(s;—s")—1In (s, —¢)
(3.5) ks 81) = =t P
1B (s)— Bf(s' 2
(3.6) s, ) — il ), - Bl ou(s) + =5 k(s, 8')
7T §S—3=9 JT
(3.7) 2o = 0,(s;) Tm BI(s;) = sin2d,(s,) .

The first part of the problem consists in finding the solution to (3.3) which
is an integral equation of the Wiener-Hopf type. The procedure is to construct
a resolvent kernel 0,(s, s') for the eq. (3.3) so that the solution may be written

(3.8) N(s) :—jds’O,(s, s )NO(s') .

One may then combine the result (3.8) together with (3.4) to obtain an equation
for N(s);

(3.9) N = (o) + [0 s, ) W)
where
(3.10) (s, 8) _—:fds"lf,(s, YOS §)

Equation (3.9) will turn out to be Fredholm type with its solution giving N%(s)
we then determine N(s) through (3.8).

;
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768 C. E. JONES

In order to solve eq. (3.3) it is useful to introduce the change of variables (8)

(3.11) 7= In (’“""—7 ""‘)
C\s—s
which then gives for (3.3)
{3 12) 9,(e) = nj(x) + —;-' /.d'v’ e (")
- AT e | expa—a] —1

0

with n,(z) = N,(s(x)). Equation (3.12) is an integral cquation of the Wiener-

Hopf type. The next Section is devoted to discussing the most general so- .

lution to (3.12).

4. — The Wiener-Hopf equation.

We now apply the Wiener-Iopf method to the solving of ¢q. (3.12). The
Wiener-Ilopf technique () consists in detining »f(r) and #7(z) ax follows (%);

W) = n), £>0,
=0, x <0,
(4.1)
n;(r)=0, x>0,
= n,(x), x<<0.
We may thus write
{4.2) n,(r) = nf(r) 4 ny(r).

We next adopt for convenience the convention that
(4.3) w(w) =0, x<0.
Taking the Fourier transform of eq. (3.12) gives (%)

sin? §,(s,)

] S+ grlh) = g

(4.4) gF (k) [1 — T S
sin® mik

where gf, g7, ¢f are the Fowier transforms of nf, n7, n.

(1Y) E. C. Trrcirmarsi: Introduction to the Theory of I'owrier Integrals (London, 1948),
p. 339.
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N/D EQUATIONS WITH A FINITE STRIP 769

Generally speaking, these Fourier tranforms are holomorphic in certain
upper or lower half-planes of the complex Lk variable. In particular g— and ¢°
will be holomorphic functions of I in the following half-planes (°):

g7 (k) holomorphic for Im k<1,
g5 (k) holomorphic for Im k> 0.

This follows from the asymptotic behavior of nf(«) and n7(x) in ». The function

. -, sin? d,(s,)
4..’; (" [, ll‘ == 1 _ ., . -
(4.3) (s ) sin? 4k

is clearly holomorphic in the strip 0 <Imh < 1; we shall succeed in solving
the equation if a g7 (k) can be found which is holomorphic in a region of the
I-plane that overlaps the strip 0 <Imkh <1.

Tt is elear that the function U(I, k) has two zeros in the strip 0 <Imi <1
and we now write (1 k) in a way which displays the two zeros explicitly:

(4.6) U k) = T (— ik —a ) (1 4 ik —ay),

where «, << 1 and

Fz(—‘ilx')
I - S,
] (k) = Lla,— i1 —ik—a;)’
ra + a, -+ A2 4 ik —ay)

| g7l = (1 i)

The function ([, k) ix completely symmetrie in the quantities «, and (1 —a,)
so without loss of generality we may assume that «, < }. The ¢~ are written
in terms of the gammua-functions and it is readily seen (using the fact that 17(2)
is & meromorphic function with simple poles at : =0, —1, —2,...) that ¢t
is holomorphic and free from zeros for Im/i> 0 and the same for ¢~ in
the region Im A <1,

Since we are discussing the problem at large I values, with our conventions

on the phase shift we may identity

(4.8) a, == (’S'I(SI) .
g 4

50 — Il Nuovo Cimento A.
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770 C. E. JONES

We further record the important facts that

] -
(pf(k)—;:ym- except for  k— —ioco,
(4.9)
@y (k) —z> | K| except for =i oco.

First we investigate the possibility of homogeneous solutions; setting
g(k) =0 in (1.4) gives

(4.11) gHE) (k) (— ik — @) (1 + ik — ) = — g7 (k) gy () .

The integrability of n,(r) at & =0 means that

(4.12) g (k) =5 in the upper half-plane .

]

If the left and right sides of (4.11) agree in a strip then it is clear that they
must be holomorphie in the entire k-plane. Using (4.12) and (4.9) it is readily
seen that both sides must be equal to some constant € everywhere. Thus

C
gt (R)(— ik — @)1+ ik — )

(4.13) gi(k) =

as

We see that g7(k) is holomorphic for TmA>1—«, and that gr(k) —1/|k
J; —oo in the upper half-plane. Ience, we do, indeed, have a nontrivial solution
to the homogeneous equation given by

@ 4i(1—€)

¢ [ Xp [— ik
(4.13) ”7(‘”):‘(1;;5 J dk exp [—ika]

—0 4 §(1—¢)

Pt (k) (— ik — @)1+ ik —a)

Next we study the solutions of the inhomogeneous equation. We must,
therefore, consider the term ¢%(k)g; (k) in eq. (4.10). The finiteness of the
inhomogeneous term nj(r) at « =0 in eq. (3.12) implies

1 .
(4.14) g‘g(l;)T_)?—“_—l- in the upper half L-plane .

Recalling (4.9) we have

(4.15) g?(k)(p'l‘(k) — constant

—r

9008



N/D EQUATIONS WITH A FINITE STRIP 771

for any direction within the strip of holomorphy 1> Im k> 0. Now g (k) @, (k)
may be broken up into a sum of two functions, n*(k) and n=(k), having the
property that #*(k) is holomorphic for Im k> 0 and that 5=(k) is holomorphic
for Im &k <<1. To accomplish this we write

@ +i€ o +i(1—¢)
1 CdR 1 dx’
O (1N =]\ AV TR N, [ NAYSC Y N
(£16) g (k)i (k) = Do — gi(k )i (k )—2”;L f > gi(K) gy (k')
—o+ie —0 4i(1—e)

which is just Cauchy’s identity. Although the fhtegrands in (4.16) each approach
a constant, it is easy to verify that the integrals still converge. The indenti-
fication of #*(k) is made as follows:

®+3E
1 dr’ .
ni(k) = o [ b gk )gT(k)
- —oo.;‘..(r
(4'1 ‘) ®© +i(1—;
1 dr’ .
ny (k) = g [ b I gk g (k') .
—-°°+‘i(l—-r)

It is also true that (k) < constant in their respective half-planes of holo-

k—> @

morphy. In analogy with eq. (4.11), we can now write
(4.18) G (R ik (— ik —a) (1 + ik — ) — Ny (kY = g7 (k) —g7(k) g (k)

Here, again, we can argue that both sides of (4.13) must be actnally equal to
a constant, (,, thus vielding (12)
Cy =y (k)

Fory Ly TTTUTT
(4.19) gr(k) T =ik —a)(1 ik —a,) "

Equation (4.19) represents the most general solution of (3.12). Adding an
arbitrary multiple of the homogeneous solution (4.13) merely changes the
constant C,. So we have

0 1i(l—t)
1 2 1Y — k(- 2tk
(4.20) N (@) = - J di __4_._( P [~~;~,——~l-](m'— 7/( )) S
(201): T (M (— ik —a))(1 + ik —a))
— 0 4-i(1 =€)

(**) Cuew: [in ref. ())] did not consider the general solution given by eq. (4.19)
but, instead proceeded in a somewhat different manner in which the arbitrary con-
stant ', never appears. Ifowever, by the tine we reach eq. (4.26) we are in agreement
with Chew’s result.

~
(=4
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772 C. E. JONES

At this point it appears as though C, enters into the solution of the integral
equation as an arbitrary constant. Ilowever, we shall now see that C, is in fact
uniquely determined. The integrand in (4.20) has two poles in the strip
0<Im#ki<I, located at k = i«; and k= {(1 —«;). We have assigned the pole
label @, so that a,<< 4. This means that the asymptotic behaviour of the
solution (4.20) is

(£.21) n(.r) ———>(0nxl exp [(1 —a,)r].

This behavior results from taking the residue of the pole in (4.20) at b = (1 —a,).
Because of the dispersion relation (2.10) linking N and ), it follows that Dalso
hax the asymptotic behavior (4.21). Transforming back to the s-variable, this
gives

1
(4.22) D, (x) —> const- .
= (37— )1

But here we arrive at a contradietion for eq. (2.5) is also a valid representation
of D and gives (%)
1

(4.23) D, (x) —>const -,
$—>s8, (.\.1___ s)v),{i )

But analyticity in ! and the convention that §,(s )——>0 enables us to identify

a; = 8(sy)/m, so behavior (4.22) ix wrong. The correct behavior (4.23) can be
regained from (4.20) if we seleet the constant ¢y so that the residue of the pole
at b= i(l —«;) vanishes. This is accomplished by requiring

(£.211) (o= — ik —i(l —a).
Then the leading behavior for n,(«) becomes exp [a.] given by the pole in

(4.20) at k= ia, and the belavior (4.23) for D) results. We can now rewrite
g7 (k) taking into account (4.24). First we note

. 1 1
1 9= RS T O N s S A 0 Y o —
(£.25) (k) + C, o .f AN g (B) 7 ( )[/."—/.' T —(lz):|

@t E

[ — il —a,)] ,(/‘(/‘ )(ft(/‘ )
- 2 i f W I — i1 — ]

This gives the following result for gf(k):
. :
1 1 T Ok o (k')
N —_— (h (Pz v
4.2 (k) = —- : 1k —— .
(4.26) gu (k) 20 @i (k) (— ik —a,) f ‘ (k'—k [A’—-? 1——a,)]
+ o +ie
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N/D EQUATIONS WITH A FINITE STRID 773
L ]

The solution, #,(r), is then given by the formula

@+ (1—¢)
1
(4.27) N () = — f Ak exp[— k2] gt (k) .
(27)
— @ i(1—¢)

We wish to emphasize that the arbitrary constant €, has really been elimi-
nated from the problem for all I values. It has been eliminated at high values
of I by means of the convention §,(s,) —=>0. The point here is that o knowledge
of sin% d,(s,) is of course not sufficient to uniquely define §,. Once the ehoice
of a convention is made for 4,(s), the requirement of analyticity in I determines
8,(s,) from sin® ,(s,) for all I. Thus we sec that the apparent arbitrariness
introduced into the amplitude by the constant (', is completely removed by
the assumption of analyticity in 1.

5. — The resolvent Wiener-Hopf kernel.

We now proceed to construct an explicit expression for the resolvent kernel
of the Wiener-1Topf eq. (3.3). This will enable us to establish the Fredholm
character of eq. (3.9) and thus to obtain the complete solution for N,(s).

The following procedure for contructing the resolvent kernel was learned
by the author from OMNES (*3). From eq. (4.26) we have that the Fourier
transform, ¢ (k), of the solution, .V,(r), is given by

@4 JE

. - I " Gk Gk
4 .1v T /l‘ e :—.‘ - l‘/ LT T T T L)
(5.1) i = s |t
—-+{e
where
) ~_ ,‘— ln' ~ .
(5.2) Gy(k) ==+ (lz( ) ) ¢7 (k) = ¢ (W) (— ik —a)) .

ik --(1—a,)

The solution, .V (V. is given by (4.27) and using the convolution integral (1),

(*¥) R. OmxxEs: private communication.
() We are using here the formula
B + ©

1 ) | -
(21)% f}(y) L(r—y) dy - (—2;)% J PN exp [— dbea]dk

where I' and /I are Fourier transforms of f and Z; for details see P. M. Morsr and
H. T'esupacu: Methods of Theoretical Physics, Pait 1 (New York, 1953), p. 464.
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774 C. E. JONES&

we may infer that

+m

1
(5.3) M) = ooy f dyact (s — y) F*(y) ,
where
® 4ila;4€)
1 dak
29 -+ _ _ 13N - '/\*t
(')'4) & (E) (27!)} (7)-;-(/{) Q\p[ ( S]
—®© 4 ilay+¢)
and
l m-‘{»-ir
(5.5) F+(&) = o)t J dk (k) exp [— ik&]
— 4 F
with
U Ak k) T
. -~ Ar g (w) ¢ (K
(5:6) M) =i f Te—k

We have used the « + » supersceript on « and F' to emphasize that they are
generally nonzero only when their arguments are greater than or equal to
zero. This is true because the Fourier transforims are holomorphic in the upper
part of the & plane.

Using definitions (5.2) together with (L.7) it ix easy to verify that

(5.7) g (k) ——>1,

where the limit is taken in the domain of holomorphy. This means that ot
defined through (5.4) has a ¢ function contribution which we separate out
explicitly:

(5.8) at(€) = (2a)0(&) 4 a+(&).

The function a*(&) obviously has the Fourier transform

-1
. o— 1.
i (k)
Using the definition of F* contained in eqgs. (5.5) and (5.6), we may again call
upon properties of the convolution integral (**) that will immediately enable
us to deduce

0 [
5.9) w0 =32 [ apare—pip)
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where (&) has the usual properties

0(6) =0, £<o,
0(5) =1 9 5 > 0,
and
1 ~ .
(5.10) a=(z) = (‘.’n)";'fdk ¢7(k) exp[—1ikz].

Again, as a consequence of (5.7) a~(2) will have a é-function part so we
write in analogy with (5.8): -

(5.11) a(2) = (27)¥0(2) 4+ a(2) .

As a consequence of eqs. (5.3) and (5.9) (uxing also (5.8) and (5.11)) we
can write the following expression for the resolvent kernel, R,(z, z'):

0(2)0(«") ~

(5.12) Rz, 2') = 0(«")d(r — ") 4 *(T"z)* a(r—a') 4

N 0(;,;)0(;: ) G — ) +0(.,,.‘))0(;,«) f A& 5 (&) G0 — £ —a)
(2)¢ i 4
Max(0.x—a']
where
(5.13) () =fd;l" Ry, )ynS(r ).

Fortunately, it is possible to make an explicit evaluation of the functions &f

in terms of the hypergeometric functions F. A straightforward calculation

gives
~ 2\ ¥ sin?xa, 11 4 «,)
5.14 (2) == — | — —_—] X —_— 2 e e o
(6.14) “ (e (7) sinzz:m,[‘ AT o
“F(1 +ay, 1+ ayy 14 2a,: exp[—=z]) —
1*(1 —a,)
— OXI)["’z]'I’(l -—:_’aj) F(l—a;. 1 —a,, 1 —2a,, exp [—z])]
and
- 2\ ¥sin? ma, I'*(1 + a,)
5.15 a(2) =— (-] ———]ex 1)2] 0 -
( ) (2) (n) sin 27a, plle+1) ]F 1 4 2a,)

(14« 1+ a, 1+ 2a,;5 exp[z]) —

. ]’2(1 —a,) o .
Fit gy PO = 1= 1= 20, exple) ]

~ exp[(—a,+ 1)z]
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Formula (5.12) may be compared with another formula for the resolvent kernel,
which was recently derived by Terrrrz () in a difterent manner from the
above.

- The presence of the d-function in the formula (5.12) for the resolvent kernel
is casily understood as TEpLITZ (%) has shown. If a, = 0, then a*(z) = 0 and
(@) = nf(x). The problem then reduces to one of solving integral eq. (3.4),
which is easily scen to be a Fredholm equation (°).

We originally assumed that we were at large values of so that ¢, =09,(s;)/r < 1.
If we now analytically continue to smaller values of 1, it is casy to see that the
resolvent kkernel £22,(r, @) is well defined and analytie for «,> % When a value
of 1 is reached in the continuation procedure such that «, = 1, it would appear
that R, is singular because of the vanishing of the factor sin 2ze, in the deno-
minator of the funetion &*. This singularity is spurious, however, and it is
easy to check that the numerators for & also vanish at @, = 1 so that the
resolvent kernel is analytic at the point a, = }, as TErLITZ has emphasized (*°).

6. — The Fredholm equation.

-Having found an explicit expression for the resolvent Wiener-Hopf kernel,
we now demonstrate that eq. (3.9) for N(l’(.s') can be converted to Fredholm
type whenever a, <1 and, hence, it possesses o unique solution. An integral
equation is Fredholm for our purposes if its kernel is square integrable (ScHxapr).
Once N9(s) is known, we determine N ,(s) through eq. (3.8) and our problem is
solved. If we express the resolvent kernel R(r, ') (eq. (5.12)) in terms of
the variables s and s’ (eq. (3.11)) and denote the resulting kernel by R, (s, s')
we can write (eq. 3.9) in the form

.
7

<y Sy e ~ b
O V) = 570 [ |t ) - fas T IS
. S

X
1—

where Til 1s just I, with the (3-fuugtion onmitted. The kernel for the integral
eq. (6.1) is obviously just ..

(6.2) Koy, 8') + f ag Tilsy DI, )
Sl—-8

So

(*) V. L. Tepritz: Phys. Rev., 137, B 136 .(1965).
(1%) In the Balazs model for the strip equations [ref. (3)] this is just what happens:
a,= 0 and the resulting equation for N is I'redholm.
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The function IV,(s, s') is square integrable since

63 Bylan 6 comsp, (58 I (= 8) — Gy — ) I (s, — )
. ARSI R —> b - T o ) B o T T

’
$.8>gy S — 8

To study the properties of the integral term in (6.2) we must establish the
behavior of I, (&, s') as both arguments approach »,. Utilizing eqx. (5.12), (5.14)
and (3.15), it is readily concluded that

Iy, @) ——> const-exp [a,r],

o’ fixed

(6.4)
Ry, &) ——> const-exp [(1 —ay)r'].

«x fixed

These limits are the same as those derived by CHEW (%), who assumed that
a;< 1. The limits (6.3) continue to hold also if «, <1. We established in the
last Section that the resolvent kernel could be continued to the region a, > 1.
Transforming to the (3, ') variables we find

(s, 8") const
T T T NG
Si—s  sra (5— %)
8" fixed
~
(6.5) - ,
Ry (s, &) const
—_ > .
oo 8> oo Q! ay
s o (=)

In Table I we give the limiting form of the kernel R(s, 8')/(s; —s) as both s and s’
approach s; with s> s/, s =4', v <&

Tavre 1. — Behavior of I\(s, s')/(s,—s') as s and 8" — s;.

| : |

; ! 8> 8 ‘ § =8 s s ‘
| |

et - 1

‘ J

<< | const-(s;— )4 (s;— N1 conste(s,— )7L ¢ conste(s;— )Tl (s,— 8')"® }

! B _ 1

| B ‘ i

e > conste (s 8)T N (s 8T) T conste (s - 8) T const () 8)7 0 (51— 8")74

Since the sum of two Schmidt operators is also S¢hmidt, in order to verify
that (6.1) is Fredholm it is suflicient to establish that the integral term in the
square brackets of (6.1) is square integrable in s and s'. Since also the product
of two Schmidt operators is Schmidt this last conclusion will follow immediately
if T{,(.s‘, $)/(sy —s') iIs Schmidt. Unfortunately Table T shows that this is not
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the case; R(s, s')/(s; —s') is not square integrable. However if «, < 1 we can
still show that the integral

f AEK (s, &) It/(&, 8') (s, — 7)1

fo

iy square integrable. To do this we simply note from eq. (5.3) that K (s, &)
can be bounded as follows

(6.6) K,(s, &) < const-In(s, —s) In(s, — &) .

8,8" >3,

So we find

sy ~ s
(s, ) R, &'
(6.7) st 3 ’:)-- :,(*1 )'<('Unst-ln(.\'l——.s-) (sy— ") | d& In (5,— &)-
vl_v
S0 S0

b1

vy — &)W (5, — .\-’)“"‘fd;“ In (s;— &) (s, — 5)“"] <Lconst-1n (s, — 8)($;,— )™

"
8

which is, indeed, square integrable. Thus we can coneclude that if a, <%,
eq. (6.1) ix Fredholm. This result was given by CHiw (°).

But what if «,>1? In this case our argument of the last paragraph will
not go through. The kernel of the integral eq. (6.1) is not Fredholm as it stands.
However the difticulty is easily repaired for we can consider the integral equation
for the function N9(s) defined by

=

(6.8) s) = NU(s) (s, — )7 2l O<l,1—a,>e>0.
From eq. (6.1) we see that the integral equation that has for its solution N‘}(s),
has for its kernel

(6.9)  (sy— w)=ber T I (3, )6y — ' )irmhe) o (s, — g)or=ia.

h

' / AEI (s, &) RA(E, )3y — o)

8o

Utilizing the bound (6.6), the kernel (6.9) is casily seen to be square integrable.
With the results of this Section we may conclude that a solution to our
original eq. (2.9) certainly exists whenever a,< 1.
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7. — CDD ambiguities and maximal analyticity of the second degree.

Having shown in the last Section that solutions to the integral equations
for the partial amplitude exist, at least for large I, we now turn to the questions
of whether the solutions found are unique and whether unique solutions may
be found for lower values of angular momentum using maximal analyticity
of the second degree ().

Let us review the logic of our current position. The basic mathematical
problem to be solved is represented by eqs.-{(2.1) and (2.3):

sin 6 ) exp [10,(s)]

(2.1) By(s) = 0 (Q)

b

1 Im By
(2.3) By(s) = B (s) +:[-f o B

(¢"—)

To complete the specification of the problem. we insisted that o,(s) and B7(s)
be real in the gap (sq, 8,) and we considered B4(s) to be a given function; we
then sought to solve for B,(s) in the interval (s,, 5,). Our next step consisted
of writing B,(s) as N,(s)/D(s) where D (s) was required to carry the phase of
the amplitude on the interval (s,,s,) and be real elsewhere. That any By(s)
satisfying (2.1) and (2.3) could be so written was a consequenee of the Omnes
formula (%) (2.5). Our procedure was to define the properties of Dy (s) and theu
to define N,(s) by N(s) = B,(s).D,fs). The function () is, of course. not
completely specified by its phase on the interval (s, %), we further required
that D,(s) — 1 as s —>oo. Thix led to eq. (2.6) tor D (s).

With eq. (2.6) tor D (s). we deduced the integral eq. (2.9) for N,(s) which
we lave shown to be soluble at least for «, << 1. Tlowever, we could have
equally well written for D (s)

o) T R

R PN 'R
s —y s—py

where the numbers y; and p, are arbitrarily chosen complex numbers except
that they must be picked so that D,(s) is real outside the interval (so, 8,). The
equation for N,(s) then becomes

n -y 1 I))
(2.9 Nyx) = BJ(s) + i B f’, g
1=1 '\'_/L’i
L[ Bl — 1
+—f<~' O = B ) M)
4 §—29
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Now it 1 ele: r that this equation for Ny(s) will also have a solution (at least
if none of the /),- ix in the interval (s0s))) as lonl_r as «; is taken less than one.
It then follows that our oviginal problem (eqs. (2.1) and (2.3)) has infinitely
many xolutions whiel can be characterized by the parameters i and B:. What
we are discussing, of course, is just the well-known CDD ambwmh (*). The
result for y(s) as computed by eq. (2.10) is no longer given by (2.5) but must
be now written

(s —so)" " TT (s — i) _— 5 (s
(2.5") Dy(s) =~ Tt vxp[——J ds’ (vf('s ):l ,

1T —p)
-1

wlhere the g, denote the positions of the m zeros of D(s). Tt also follows that
the solution will have the property

(7.1) 0(sy) = (m—n)zx,

which, interestingly. would just correspond to Levinson’s theorem (77) if
d(co) = 0 and we were talking about an elastic problem.

The question now is: can some prineciple be invoked that xelects only one
of the many possible answers ax the true solution? We start by establishing
the manner in which solutions are uniquely determined at large values of [

FFor sufliciently lurge values of 4, we may appeal to the results of FROISSART (%)
to conclude that no arbitrariness is porsible, To b2 explicit, for large 1 the
amplitude ,(s) in the interval (sy, ;) must be determined in terms of the
absorptive parts in the erossed ¢ and » channels by the FROISSART-GRIBOV
transform (1)

[ee}

&
(7.2) BE(s) = - f S0 = DHE )

) Lyttt
ty

-1
L

where the 4 refer to the signature of the amplitude in the usual way and D=(&, s)
is @ linear combination of the ;11)\'01'1)1-iv1* parts in the ¢ and « channels.

It is elear that in our problem the input function 57 (s) is determined by D=(&,s)
for we have only to subtract the cut contribution (s,, s,) from (7.2) in ord:r to

(*") N. Levixsox: Wgl. Danske Videnskab, Selskab, Matt.-Fys. Medd., 25 No. 9
(1949). ‘

(18) M. I'vorssanrt: Phys. Rev. 123, 1053 (1961).

(1) M. Frossarr: Reportto the La.Jolla Conferenc eon T'heorctical Physics,(June 1961)
(unpublished); V. N. Grmov: Zurn. Fksp. Teor. Fiz., 41, 667, 1962 (1961) [E nglish
transl.: Sov. Phys. JETP, 14, 478, 1395 (1962)].
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have Bi(s). Now it certainly follows that our solution if it is to be the correct
one and, hence, agree with (7.2), cannot depend arbitrarily on parameters
like y; and g, of eq. (2.6"). It could happen, of course, that the correct equation
to solve was (2.9') but, if so, the #, and y; would not be arbitrary. They would
have to be given in some way in terms of D(& s). We now proceed to show
that the correct equation is, in fact, the original eq. (2.9) without poles in the
D-function.

The point is that eq. (7.2) has the important characteristic that for I — oo
Bys) =0 for all s in (s, ). With the phdle-shitt convention we have
consistently chosen throughout, we know = that 3 (8) =0 ay Il —o0. DBut
0,(8y) = (m —n)z and in order to fulfill the requirement that B,(s) vanish in the
limit of large I, we elearly must have m = n. But we also know that there
are no bound states for large angular momentum so n = (0. Thus the correct
solution for large [ is the one for which ) has no poles.

Now that we have found the correct and unique solution to our problem
at large 1, it is now important to establish the solutions for lower 1 values.
This is now done by analytic continuation { and as a result of assuming maximal
analyticity of the second degree (MASD). That is, we shall try to establish
that our solution is analytic in I and hence define the partial-wave amplitudes
by analytic continuation. It is the assumption of MASD that insists that
the physical amplitudes agree with the continuations.

Our first considvration ix the integral equation (6.1). It is important for our
purposes to know that the solution N%(s) defines an analytic function of 1.
TikroroULos (**) has made a careful study of the analvticity of solutions to
Fredholm cquations whose kernels depend on a complex parameter 7. A suf-
ficlent set of circumstances for the solution to be analytic in some domain 3/
of the variable [ ave these: 1) the kernel be an analytic function of 1 in J/:
2) the kernel be bounded over 3 Dby a square integrable function which is
independent of 1. The exact form of the kernel of eq. (6.1) 1s, of comrse, not
known to us, but it is an analytic function of  with probably only isolated
singularities.  The closest singularity of this kernel known to exixt ou the real
axis for s in the interval is a pole at [ = —I. Otherwise, 1t s reasonable to
assume that the kernel will be analytic in some neighborhood of the real axis
for Rel> —1 and s in the range (s,, ). aving satistied eritevion 1) above
it only remuains to show the kernel of eq. (6.1) can be appropriately bounded.
That this is true follows from an examination of Table T and eq. (6.6), which
give the bounds of I, and I?; near the dangerous point where both arguments
approach s,.

(%) G. Tikrorovros: Phys. Rev., 133, B 1231 (1964). The appendix of this paper
summarizes the mathematical theorems which are important for our considerations.
MaxDELSTAM has considered the analyvticity properties in I of .N//) equations when
elastic unitavity is assumed: 8. Maxprrnstay: Ann. Phys., 21, 302 (1963).
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Thus we have N(s) as an analytic function of I at least for Re { such that
a;<—1and Rel>1. The analytic function N9s) ix, in fact, just the unique
solution of the Fredholm equation (6.1). Once we have N ‘j(.s') specified as an ana-

1

lytic function of I we detine N(s) as an analytic function of [ through eq. (3.8)

.
-

9

(3.8) N(s) ::f(l.\"(),(.\', $YNUs') .

RL

The kernel O(s, s') is an analytic function and the transform (3.8) certainly
defines N ,(s) as an analytic function of I wherever the integral exists. This
region certainly includes the domain «, < 1. Finally, J),(s) is detined over the
same domain by eq. (2.10):

1 1s’
(2.10) Dy(s) =1 ~—fs‘ T o) M)

Zeros of D (s) corresponding to bound states are to be expected, in general,
as Uis decreased. Tt is, interesting to display the mechanism by which eq. (2.5)
for D,(s) develops a zero (31). It must be a smooth operation if D,(s) is to be
an analytic function of . In particular, we wish to verify that D, (s) maintains
its normalization to one as [ is decreased even when zeros develop. What hap-
pens is that for each zero (.s'—-.s-’:(l)) which develops in D there will simulta-
neously occur a factor of (s—us,) in the denominator.

The zeros of Dy(s) which generally represent poles of the amplitude must
emerge from the second sheet of Dy(s). This happens as follows. If we continue
down through the (s, &) cut of the amplitude we find a pole at s = s%(1) (we
assume to begin with that /) has no zero and we observe the process by which
the first zero moves onto the physical sheet), Tn the neighborhood of this pole
on the unphysical sheet we may write

. I’
exXp [.31(3,(\)-]-:?”—)::-58!(?) ,
(7.3) e .
‘sl('*) :,;* ’l In ('S'—.\'B(Z)) .

Thus §,(s) is logarithmically singular at s%(1) at a point reached by continuing
down through the cut (s,, 5,). (There is a similar singularity at the point [s2(1)]*
reached by continuing up from the bottom through the (S0, %) cut but this singu-

(*1) For a detailed study of the motion of resonance poles with angular momentum,
see C. K. Joxgs: dnn. Phys., 31, 481 (1965).
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N/D EQUATIONS WITH A FINITE STRIP 783

larity will not concern us here.) We now decrease I and shall assume that this
causes the pole at s%(1) to move out onto the physical sheet.

Let us now examine D,(s) as defined by eq. (2.5) (we assume originally
that D has no zeros):

I
"
=
K
“
=
I
7
=
|
l—l
A
=
‘f.\
-
1=
pa
| =
| SUR—

A\l

We may regard the integral over 4, as an intggr;lv—t.ion over a contour C with
fixed endpoints at s’ =, and s’ =s,. For physical values of s, the integral
(2.5) is defined by giving s & small positive imaginary part. In order to evaluate
D,(s) on the second sheet in the neighborhood of the points s = s*(l), we must
distort the contour €' as shown in Fig. 1 and fold it around the logarithmic
branch point of §,(s') at 8’ = s*(1).

s' —plane
A
A
SO 51
1 { -
s
X
s (4,)
Fig. 1. — Evaluation of D/(s) near Iig. 2. - Emergence of a zero of D, (s)
s = s%(1). onto the physical sheet.

Near s = s%(l), the most important contribution to the integral for D,()
comes from that part of the contour near the cut in Fig. 1. To evaluate this we
only need to use the discontinuity of the logarithm (7.3). We thus obtain

1 ds" 2

(7.4) ]),(.v)-m exp [—— f e ] = conxst- (s—s"([)) .

T s—s
RISl

So we see explicitly that D, (s) has a zero on its second sheet at the location of
a pole of the amplitude. As we deerease Uin suclh a way that #(1) moves onto
the physical sheet the contour €' becomes distorted ax shown in Fig. 2.

The contour from s%(1) to s, can be easily evaluated and the result is
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784 C. 1. JONES

If there are & bound states, we have

_ NLprp— 1) 1 L 0u(8")

; 8§ — 8

where s7(1) are the location of the & bound states. We also see that 0,(sy) = Aa,
again strongly reminiscent of Levinson’s theorem (1) for an elastic problem
where d(oo) = 0.

Thus we see that as §ix decreased, the zeros of D (s) emerge in a4 smooth
fashion onto the physical sheet and D, (s) maintains its normalization to one
at Infinity. Also the original eq. (2.9) for N,(s) continues to be valid even when
there are bound state poles.

Of course, it 1s also elear from eq. (2.10) that D, (s) will maintain its normal-
ization to one at least so long as the integral over N (s) converges.

We have seen that D (s) cannot have poles for sufliciently large angular
momenta. We would now like to verify that as we decrcase the angular momen-
tum poles cannot cmerge from the second sheet of D(s) in o manner like the
one just deseribed for the zeros.

In order for Dy(s) to have a pole on its second sheet, we elearly need only
to change the sign of the logavithmic singularity of the phase shift in eq. (7.3).
But if the phase shift has the behavior

!

-1 ,
(),(.\')-—:—? ’[ In (s — ._\"(1)) R

where 8™ is on the second sheet., reached by going through the (s,, 5,) from above,
then this means the S matrix exp [200,(s)] vanishes on the second sheet at
= g,. Thix i turn means that the S-matrix and henee the amplitude have
a pole on the physical sheet at s =s,. Tt may he possible to dream up a BY
which produces such a situation but we rejecet such a possibility as physically
unrealistic sinee it produces poles on the physical sheet and also violates the
condition that the Regae pole z(s) has the property Innx(s) -0 for s -s,. We
may, therefore, safely conelude that the D-function will not develop poles as
the angular momentum is decreased.  Also from another point of view, we can
understand that if N (s) is a solution of (3.3) then the integral in eq. (2.10)
over N (s) to determine Dy(s) must converge and no poles of 1),(s) can emerge
from the cut (s, $,).
This leads us natuvally to the question of what happens if, as [ is decreased,
we encounter a region where a,> 1. If this is the case then the eq. (6.1)
for Ny(s) ceases to be Fredholm and nearly all our questions for N ,(s) and D,(s)
fail to be defined. Of course, in the domain where «, <1 we have established
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that V,(s) and /),(s) will be analytic functions of ¢ and, in fact, we have given
a prescription for uniquely calculating .V,(s) and D,s) in terms of the input
function B%(s) using a combination of Fredholm and Wiener-Hopf theory.
We may say that we now simply analytically continue these solutions for
4, <1 into the region a,> 1. While this statement may be all right in prin-
ciple, it is somewhat abstract and we would prefer to have explicit formulas
giving the analytic continuation and showing how to calculate N (s) and D, (s) at
values of I with «,> L. In seems certain that such formwulas can be derived
using the techniques of Trxrorouros (20). We fhall not, however, give such
formulas here, since there appears no need™in practice to explicitly compute
the amplitude in these regions.

We shall, however, ask another question which /s of practical importance
and which is closely related. Suppose that as we continue to decrease 1 a,
once again drops below one, can we conclude that all our equations which
now once again become well-defined are correct? Can we once again calculate
the amplitude using the techmiques devised hevein. The answer is yes. The
amplitude continues to be unitary and, henee, the basie N and D equations
are correct. The only real matter we must decide is again whether poles should
be added to D,(s) giving for the N eq. (2.6"). However, we have previously
argued that D,(s) cannot acquire poles as a result of analytic continuation
in ! and this argument did not dep:ind upon «, being less than one. So we con-
clude that the solutions to our problem whenever «, <1 are correctly given
by the solutions to the integral equations as we have formulated them without
poles in D(s).

8. — Concluding remarks.

We have shown how the prineciple of analytic continuation in I or maximal
analyticity of the second degree (19) may be used to remove arbitrariness of
the CDD type from partial-wave amplitudes. Using V/D equations with a
finite strip for the D-function has made it possible to carry out a discussion
without assuming eclastic unitarity in inclastic regions. It may also be added
that any othor types of arbitrariness such as, for example, the s-wave subtraction
constant have also been eliminated sinee the amplitudes are completely deter-
mined by the input B7(s).

We now wish to bring attention to a point which has not been emphasized
thus far. If we assume the function B7(s) to be given exactly, then our problem
of finding B,(») is actually already solved by the following simple process:
compute Im B7(s) for s> s, which is just the discontinuity of By(s) for s > s,;

N 51 — 11 Nuworvo Cimenlo A,
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analytically continue the discontinuity Im 5%(s) to the region s <s,. Sinces
was assumed to be less than the fivst inelastie threshold, we may determine B,s)
in the region s,-<s-7s; and so determine £53,(s) through formula (2.3).

What, then, was the point of our whole discussion? First of all, the fact
that our complicated integral equations for 53,(s) have unique solutions does
not follow from the above. The existence of the solutions to the integral equa
tions was not based upon B(s) or its discontinuity being analytic in s. Thu,
although we could be sure that the «correct » answer calculated as outlined
above would be @ solution to our integral equations, we had no assurance that
it would be the only solution. In fact, the first type of arbitrariness in the
solutions to our integral equation is relevant here. We saw in Sect. 4 that
there existed an infinite number of solutions to our Wiener-Hopf equation
corresponding to the addition of multiples of the homogencous solution,
Although as we discussed all but one of these solutions had the wrong anal
yticity properties in I, these extra solutions also diftered from the «corrects
answer by having a singularity at s =s;. These extra solutions are thw
obviously difterent than would be calculated from the solution one obtains
by the analytic continuation of the discontinuity in encrgy.

Another deeper point has to do with the assumption of the existence of
solutions. No one has, in fact, shown that there exist functions satisfying
all the requirements of analyticity and unitarity which we impose. Most discus-
sions assume such funetions exist and, under this assumption, display relations
or equations that such functions must obey. The N/D equations embody the
enforecement of unitarity utilizing also some analyticity requirements. It is a
fortunate state of aflairs that, under these conditions, the existence of a solu:
tion to the integral equations can be established without a detailed knowledge
of the input function B(f). If such a solution could not be found, our originil
assumption of the existence of solutions to the exaet problem might fall into
question.

Ifinally, there is the immensely practical point that we do not, in fact, know
the function B7(s) exactly in an actual caleulation. But if the approximate B(s)
possesses reasonable analyticity in ¢ and s all the requirements for unique
solutions, analyvtic in f, will be fulfilled and the approxinmate problem will parallel
the exact situation in a useful and important way. It is obvious that in the
approximate problem we could not achieve a unitary solution by continuing
an approximate discontinuity Im B¥(s) as discussed above.

We may just add the remark that in the approximate practical calculation
outlined by Cuew (') and (‘HEWw and JoNBs (?) all requirements are met fo
determining @ unique solution. In fact in their model s, is chosen so that a
iy always less than unity so the results of this paper are immediately applicable
As mentioned before the Balazs model involves sctting a, = 0.
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RIASSUNTO ()

Si espone qui un trattamento quasi completo delle equazioni N/D in cui la funzione 1D
ha solo un taglio finito. Si passa in rassegna il lavoro originale di Chew su queste equa-
doni e lo si sviluppa per provare l'esistenza di soluzioni ogni qualvolta d,(s;) < z e per
ndurre in questi casi ’equazione integrale per N ad un tipo combinato di Wiener-
llopf-Fredholm. Si ottiene una formula esplicita per il nocciolo risolvente di Wiener-
lopf che comporta un solo integrale s u prodotti di funzioni ipergeometriche. Si esaminano
le ambiguitd CDD e si dimostra I’analiticith massima del secondo grado come un mezzo
per eliminare ogni ambiguita dalla soluzione.

(*) Traduzione a cura della Redazione.




